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Dark Matter

• 84% of the matter is Dark(DM)

• DM interacts through gravity. 

• Further DM interactions unobserved so 
far. Such couplings must be very weak, 
much weaker than weak interactions.
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N-Body Simulation on Cold 
Dark Matter

Max-Planck-Institut für Astrophysik (2005)

In various cosmological N-body simulation, 
the Λ Cold Dark Matter (ΛCDM) model 
preform well especially on the large scale 

structure. (e.g. Millennium Run 2005)!
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N-Body Simulation on Cold 
Dark Matter

Max-Planck-Institut für Astrophysik (2005)
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•Collisionless

•Identical particle mass

•Extremely “heavy”(~10^7 solar mass)
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N-Body Simulation on Cold 
Dark Matter

However, in small scale there exists 
several problems, such as cusp-core 

problem. (e.g NFW 1996, Moore et al 
1999 & 2006, Navarro et al. 2003)



• Observation [pseudo-isothermal (PI)]: Core structure  

CUSP/CORE DENSITY 
PROFILE
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ABSTRACT
This paper gives an overview of the attempts to determine the distribution of dark matter in low surface

brightness disk and gas-rich dwarf galaxies, both through observations and computer simulations. Observa-
tions seem to indicate an approximately constant dark matter density in the inner parts of galaxies, while
cosmological computer simulations indicate a steep power-law-like behaviour. This difference has become
known as the “core/cusp problem”, and remains one of the unsolved problems in small-scale cosmology.
Subject headings:

1. INTRODUCTION

Dark matter is one of the main ingredients of the universe.
Early optical measurements of the rotation of spiral galaxies
indicated the possible presence of large amounts of dark mat-
ter in their outer parts (e.g. Rubin et al. 1978), though in many
cases the rotation curve could also be explained by the stars
alone (e.g. Kalnajs 1983; Kent 1986). Observations at even
larger distances from the galaxy centers, using the 21-cm line
of neutral hydrogen, definitively confirmed the mass discrep-
ancy (Bosma 1978, 1981a,b). For an extensive review see
Sofue & Rubin (2001). Most of these early observations con-
centrated on late-type disk galaxies, which all share the prop-
erty of having an almost constant rotation velocity in their
outer parts (the so-called “flat rotation curve”). As the dy-
namical contribution of the stars and the gas is insufficient to
explain the high rotation velocities in the outer parts, this im-
plies that most of the observed rotation there must be due to
some other material, the “dark matter”. The observed con-
stant velocity suggests that the dark matter in the outer parts
of galaxies has a mass density profile closely resembling that
of an isothermal sphere, i.e., ρ ∼ r−2.

In the inner parts of galaxies stars are obviously present and
they must be the cause of a (possibly large) fraction of the
observed rotation velocity. This therefore leads to a transition
from the inner parts where the stars contribute to (and in many
cases dominate) the dynamics, to the outer parts where the
dark matter is important (e.g., Kalnajs 1983; Kent 1986, 1987;
van Albada & Sancisi 1986).

The rotation velocity associated with dark matter in the
inner parts of disk galaxies is found to rise approximately
linearly with radius. This solid-body behaviour can be in-
terpreted as indicating the presence of a central core in the
dark matter distribution, spanning a significant fraction of
the optical disk. Some authors adopt a non-singular isother-
mal sphere to describe this kind of dark matter mass dis-
tribution (e.g., Athanassoula et al. 1987), while others pre-
fer a pseudo-isothermal sphere (e.g., Begeman et al. 1991;
Broeils 1992). Both models describe the data well (see
Kormendy & Freeman 2004), and by the late 1980s they had
become the de facto description of the distribution of dark
matter in (gas-rich, late-type) dwarfs and disk galaxies.

In this paper we use the pseudo-isothermal (PI) sphere to
represent the cored models, though this particular choice does
not affect any of the discussion in this paper. The mass density

distribution of the PI sphere is given by:

ρPI(r) = ρ0

1+ (r/RC)2 , (1)

where ρo is the central density, and RC is the core radius of the
halo. This density distribution leads to an asymptotic flat ve-
locity V∞ given by V∞ = (4πGρ0R2

C)1/2, where G is the grav-
itational constant.

In the early 1990s, the first results of numerical N-body
simulations of dark matter halos based on the collisionless
cold dark matter (CDM) prescription became available. These
did not show the observed core-like behaviour in their in-
ner parts, but were better described by a steep power-law
mass-density distribution, the so-called cusp. Fits to the
mass-distributions as derived from these early simulations
(Dubinski & Carlberg 1991; Navarro et al. 1996b, 1997) indi-
cated an inner distribution ρ∼ rα with α = −1. (In the follow-
ing we will use α to indicate the inner mass density power-law
slope.)

The results from these and later simulations are based on
the (Λ)CDM paradigm, where most of the mass-energy of our
universe consists of collisionless CDM in combination with a
cosmological constant Λ. This ΛCDM paradigm provides a
comprehensive description of the universe at large scales (as
shown most recently by the Wilkinson Microwave Anisotropy
Probe (WMAP) results; see Spergel et al. 2007). However,
despite these great successes, it should be kept in mind that the
cusp and the central dark matter distribution are not predicted
from first principles by ΛCDM. Rather, these properties are
derived from analytical fits made to dark-matter-only numer-
ical simulations. While the quality and quantity of these sim-
ulations has improved by orders of magnitude over the years,
there is as yet no “cosmological theory” that explains and cor-
rectly predicts the distribution of dark matter in galaxies from
first principles.

The value α = −1 found in the early CDM simulations is
very different from that expected in the PI model, where the
constant density core (ρ∼ r0) implies α = 0. These two cases
thus lead to two very different descriptions of the dark matter
distribution in galaxies. The “cusp” (α = −1) models gives rise
to a rapidly increasing “spiky” dark matter density towards the
center, while the “core” model (α = 0) has an approximately
constant dark matter density. The cusp model therefore has a
rotation curve that will rise as the square-root of the radius,
while the core model rotation curve rises in a linear fashion.
The difference in shapes between the rotation curves of both
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models is quite pronounced, and, in principle, it should there-
fore be possible to identify CDM haloes in real galaxies by
measuring their rotation curves.
Over the last 15 years or so, much effort has been put into

determining the central mass distribution in galaxies using
their rotation curves, and comparing them with the outcomes
of ever more sophisticated numerical simulations. To first or-
der, one can summarize this work as observational determina-
tions yielding slopesα∼ 0, while simulations produceα∼ −1
slopes. This persistent difference is known as the “core/cusp
controversy”, sometimes also described as “the small-scale
crisis in cosmology”. The attempts to reconcile the observa-
tions and simulations, either by trying to improve them, or
by trying to quantify systematic effects or missing physics,
are the subjects of this paper. I give a brief overview of past
and present work dealing with the determination of the central
dark matter density distribution in galaxies, with an emphasis
on the observational efforts. An overview like this, touch-
ing on many different topics in galaxy evolution, cosmology
and computational astrophysics, is never complete, and only a
small (but hopefully somewhat representative) fraction of the
many papers relevant to this topic can be referred to in the
limited space available. The rest of this paper is organised as
follows: Sect. 2 gives a description of the results that numeri-
cal simulations have produced over the years. Section 3 deals
with the observational determinations of the dark matter den-
sity distribution. Section 4 discusses physical scenarios that
have been proposed to reconcile the core and cusp distribu-
tions. Section 5 briefly summarizes the work discussed.

2. COLD DARK MATTER CUSPS
The presence of a cusp in the centers of CDM halos is one

of the earliest and strongest results derived from cosmolog-
ical N-body simulations. Dubinski & Carlberg (1991) were
among the first to investigate the density profiles of CDM ha-
los and found that the inner parts of these simulated halos
could be characterized by a power-law slope α = −1. They
did not rule out the existence of central cores, but noted that
these would have to be smaller than the resolution of their
simulations (∼ 1.4 kpc). Subsequent simulations, at higher
and higher resolutions, made the presence of cores in simu-
lated CDM haloes increasingly unlikely.
A systematic study by Navarro et al. (1996b, 1997) of sim-

ulated CDM halos, derived assuming many different sets of
cosmological parameters, found that the innermost dark mat-
ter mass density distribution could be well described by a
characteristic α = −1 inner slope for all simulated halos, inde-
pendent of mass, size or cosmology. A similar general result
was found for the outer mass profile, with a steeper slope of
α = −3. Navarro et al. (1997) called this the “universal density
profile” and it is described by

ρNFW(r) =
ρi

(r/Rs)(1+ r/Rs)2
, (2)

where ρi is related to the density of the universe at the time
of the time of halo collapse and Rs is the characteristic radius
of the halo. This kind of profile is also known as the “NFW
profile”.
The corresponding rotation curve is given by

V (r) =

√

ln(1+ cx)− cx/(1+ cx)
x[ln(1+ c)− c/(1+ c)]

, (3)

with x = r/R200. This curve curve is parameterized by a ra-

dius R200 and a concentration parameter c = R200/Rs. Here
R200 is the radius at which the density contrast with respect
to the critical density of the universe exceeds 200, roughly the
virial radius;V200 is the circular velocity at R200 (Navarro et al.
1996b). The parameters c and V200 are tightly related through
the assumed cosmology. Indeed, one can be expressed as a
function of the other, with only a small scatter (Bullock et al.
2001). That is, the range of (c,V200) combinations that de-
scribes “real” CDM rotation curves is tightly constrained by
the ΛCDM cosmology.
Simulations by Moore et al. (1999) indicated an even

steeper inner slope. They found that their simulated halos
could be best described by a function

ρM99(r) =
ρi

(r/Rs)1.5(1+ r/Rs)1.5
, (4)

i.e., with an inner slope α = −1.5 and an outer slope α = −3.
The difference between these two results indicated that is-

sues such as numerical convergence, initial conditions, anal-
ysis or interpretation could still play a role in defining the in-
ner slope. As ever more powerful computers and increasingly
higher resolution simulations became available, the value
and behavior of the inner slope of CDM halos has there-
fore been extensively discussed in the literature. For exam-
ple, to give but an incomplete listing of the many papers
that have appeared on this topic, Klypin et al. (2001) derived
slopes α = −1.5 for their simulated halos. From phase-space
density arguments, Taylor & Navarro (2001) argue that the
density profile should resemble an NFW profile, but con-
verging to an inner slope α = −0.75, instead of the α = −1
value. Colín et al. (2004) investigated low-mass haloes and
found that they were best described using NFW profiles (i.e.,
α = −1). Diemand et al. (2005) found that CDM halos have
cusps with a slope α ≃ −1.2.
Many studies assumed that the central cusp consisted of

a region where the mass density behaved as a power-law
with a constant slope. Navarro et al. (2004) and Hayashi et al.
(2004) suggested that this did not have to be the case. They
did not find evidence for an asymptotic power-law slope,
but instead noted that the slope kept getting shallower to-
wards smaller radii without converging to a single asymptotic
value. At the smallest resolved radii they derive slopes of
∼ −1.2 for “galaxy-sized” halos (as measured at ∼ 1.3 kpc),
and ∼ −1.35 for “dwarf galaxy” halos (as measured at ∼ 0.4
kpc). These values are significantly steeper than the original
NFW slope, but not as steep as the Moore et al. (1999) value.
Navarro et al. (2004) introduce a new fitting formula to quan-
tify their results. For reasonable choices of its input parame-
ters, this formula yields an extrapolated slope of α ∼ −0.7 at
r ∼ 0.01 kpc.
Stoehr (2006) also finds a gradual turn-over in slope to-

wards smaller radii. Though his simulations formally resolve
only radii ∼ 1 kpc (where a slope of α ∼ −1 is measured), an
extrapolation of his favoured fitting function towards smaller
radii results in a decreasing slope ending up as a flat slope
(α = 0) around r ∼ 0.01 kpc.
Merritt et al. (2005) and Graham et al. (2006) showed that

the density distribution presented in Navarro et al. (2004)
could be equally well described by a Sérsic function. In the
context of CDM halos they refer to this function as an Einasto
model. For completeness, this profile is given by

ρEin(r) = ρe exp
(

−dn
[

(r/re)1/n −1
])

, (5)

 

• Simulation [NFW profile]: Cusp structure 



THE CUSPED PROBLEM

T. Goerdt et al. (2006)

NFW Profile

Navarro, Frenk,& White
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NFW Profile
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MISSING PHYSICS IN 
SIMULATION?

• Property of DM?

• Dynamical? [N-body only 
consider gravity]



PROPOSED SOLUTIONS
• Dynamical solutions 

• Supernova-driven outflows 
(F Governato et al. 2010)

• Bar-driven dark halo 
evolution (MD Weinberg et 
al. 2002)

• Gravitational Slingshot?

• DM Model solutions

• Fuzzy Dark Matter (Hu et al. 
2000)

• Warm Dark Matter (Turok 
et al. 2001)  

• Self-interacting Dark 
Matter (Spergel et al. 2000) 



GRAVITATIONAL SLINGSHOT
The slingshot effect has been used effectively by NASA to send spacecraft to 
outer edges of the solar system. This phenomenon can be satisfactorily 
explained by Newtonian physics.



Stars in galaxy center
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Galaxy center is where slingshot happens 
most often!



Star frame

• Sphere of Influence 
[SOI]  

• Easy to solve the 
deflection angle 

• [No Energy Gain in 
this frame!]

which it leaves the SOI.  Basic orbital properties dictate that the magnitude of velocities 
VP1 and VP2 will be the same, but the direction will be deflected.  We can see the 
geometry of the slingshot manoeuvre, referenced to Mars, in Figure 8. 
 

Mars

VP1

VP2

SOI

Trajectory

Deflection 
θ

 
Figure 8  – Slingshot referenced to the planet 
 
The planet Mars is, of course, moving around the sun at a velocity VMars of around 24.1 
km/s.  If we consider the velocity of the probe relative to the Sun, we can add the velocity 
vectors to see the initial and final velocities of the probe relative to the Sun. We’ll denote 
the initial velocity Vin and the final velocity Vout. 
 

Mars
VMars

VP1

VP2

VP1

VMars VP2

VMars

Vin

Vout

 
Figure 9 – Slingshot referenced to the Sun 
 

u’

u’
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Lab Frame
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u2

• The frame where we 
observe slingshot.

u1

u’

u’

u’

u’

• Star velocity V in Lab frame V

• Particle’s injection and outcoming angle in Star frame ✓

0
in

, ✓0
out

• Particle’s injection and outcoming angle in Lab frame ✓

in

, ✓
out

• Particle trajectory’s angle deflection in Star frame �

0
def

= ✓

0
out

� ✓

0
out

• Dark matter Particle’s number per unit volume in Lab frame n

• Impact parameter b

• Shortest distant between trajectory and star r
p

With those parameters, we can derive their relationship by Galilean trans-
formation. First we describe the injection particle velocity in both Star frame
and Lab frame:

u

0 cos ✓0
in

= u1 cos ✓in + V (1)

u

0 sin ✓0
in

= u1 sin ✓in (2)

And so as the out-coming particles:

u

0 cos ✓0
out

= u

0 cos(✓0
in

+ �

0
def

) = u2 cos ✓out + V (3)

u

0 sin ✓0
out

= u

0
sin(✓0

in

+ �

0
def

) = u2 sin ✓out (4)

By several steps of calculation, we can easily get:

�E

sling

= mu

0
V [cos(✓0

out

)� cos(✓0
in

)] (5)

This is also the solution in JJ Dykla’s [4] derivation of slingshot e↵ect. The
energy change �E can also express below with taking integral on d�:

�E

sling

=
1

2
m[|u2|2 � |u1|2] = m(u1V cos✓

in

+ V

2)(1� cos�

0
def

) (6)

Notice how beautiful this formula is. For special exapmle, we can take
�

0
def

as 180�. In this case we may consider it as a elastic collision, and we
can see the forumla is indeed equivalent to collision formula! For another
extreme example, we can take �

0
def

as 0�, which as like there’s no source to
produce gravitational slingshot or collision. We can see its indeed again as
we predicted.

However, for the averaging the energy gain for dark matter particles com-
ing from di↵erent angle, we need to integrated the solid angle, and also con-
sider the flux changing during coordinate transformation between star frame
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and lab frame, which implies the particle will has higher possibility for head-
on collision. With these parameter above, we can expressed our average
energy gain as below:

h�Ei =
R
nu

0 1
2m[|u2|2 � |u1|2]sin✓d✓d�R

nu

0
sin✓d✓d�

(7)

Which indeed shows that on average dark matter particle will gain energy
per single slingshot!

Cusp-core problem and N-Body simulation

N-body simulation has been used to investigate how matter in the Uni-
verse evolved over time. Those simulations utilized a cosmological box with
”particles” in it, and the equations of motion of a system of N particles under
the influence of their mutual gravitational forces are integrated numerically
without any simplifying approximations. [6] One of the largest N-body simu-
lation, the Millennium Run, has successfully describe our large scale structure
of the universe very well. [1]

Obviously the n-body simulation has been also used to study the evolu-
tion of dark matter halos. For example, Navarro, Frenk and White published
”The Structure of Cold Dark Matter Halos” (1996) with result from N-body
simulation. [2] Several simulations was fellowed by Moore et al. (1999,
2006)[7][8] and Navarro (2003)[9]. Those simulation all suggest similar re-
sult, which shows the consistence of the simulation sets.

However, there are several problems between the simulation and observa-
tion. One of them is the dark matter density profile are inconsistent in the
inner part of the dark matter halo. In this report, I will use the NFW profile
as the standard result from simulations. Which can be describe by:

⇢

NFW

(r) =
⇢

i

(r/R
s

)(1 + r/R

s

)2
(8)

We can immediately see the inner part are described by a steep power law
mass-density distribution, the so-called cusp. Fits to the mass-distributions
as derived from these early simulations indicated an inner distribution ⇢ ⇠ r

↵

with ↵ = �1. (In the following we will use to indicate the inner mass density
power law slope.)While the observation prefers a pseudoisothermal model:

⇢

PI

(r) =
⇢0

(1 + r/R

c

)2
(9)

5

14



SLINGSHOT MECHANISM AS A SOLUTION 
TO THE CUSP-CORE PROBLEM

• Slingshot is similar to elastic collision and 
scattering

• Slingshot is similar to 2nd-order Fermi acceleration



SLINGSHOT MECHANISM AS A SOLUTION 
TO THE CUSP-CORE PROBLEM

• Slingshot is similar to elastic collision and 
scattering

• Slingshot is similar to 2nd-order Fermi acceleration



ANALOG: 
PARTICLES IN A BOX

Light object goes faster! credit: astronomynotes.com



MEAN FREE PATH

Gravitational Slingshot as a Solution to

Cusp-Core Problem
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Mean free path

In physics, the mean free path is the average distance travelled by a

moving particle (such as an atom, a molecule, a photon) between successive

impacts (collisions). In our case, the moving particle is dark matter particle,

and the successive impact is equivalent to slingshot caused by stars.

From reference [1], we can see the magnitude of the mean free path de-

pends on the characteristics of the system the particle is in:

` = (�n)�1
(1)

Where ` is the mean free path, n is the number of target particles per unit

volume, and � is the e↵ective cross sectional area for collision. In our case,

the n is the number of stars per unit volume, and � is the e↵ective surface

of influence of a star for slingshot.
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TIME EVOLUTION OF DM 
DENSITY PROFILE

• Circular orbit model

• Dark matter will move to 
higher orbits as time evolve 
[due to slingshot]. 

Orbits of Solar system. 
Credit: NASA
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particle shall gain energy due to the slingshot e↵ect and
move to higher orbit with radius r0. Thus, we see:

�GM(r)m

2r0
= �GM(r)m

2r
+

dE

dt

dt, (0.17)

which r

0 = r + dr.
Now we assume the number density of stars follows the

surface-brightness profile described by Sersic law. Here
we choose the exponential distribution as a demonstra-
tion profile, which is:

n⇤(r) = n0e
�r/r0

, (0.18)

where n0 is the stellar number density at the center of
galaxy.

0.02 0.05 0.10 0.20 0.50 1.00
r!kpc"

2

5

10

20

50

100

Ρ!r"

T!2"10^6 yrs

T!10^6 yrs

T!5"10^5 yrs

T!2"10^5 yrs

T!0 yrs

FIG. 1. DM density profile in the inner part of the galaxy.
Red line represents the original NFW profile (T = 0 yrs).
Other curves correspond to other values of T , as shown.

Now we obtain the stellar number density profile from
equation (3.7) and combine with equation (3.1) and (3.6),
we have:
Z

R

f

R

i

e

r/r0
dr =

Z
T

0
C0dt, C0 =

FV

2
⇤ V̄DM

n0�⇤
2⇡GR

s

⇢

i

, (0.19)

in which R

f

and R

i

are the final radius and initial radius
of the dark matter orbit, respectively. After the integra-
tion we will see the relationship between radius (R

f

, R
i

)
and time (T ):

R

f

r0
=

R

i

r0
+ ln

⇥
1 +

C0T

r0
e

�R

i

/r0
⇤
, (0.20)

and the density distribution after time T becomes:

⇢(r, T ) =
⇢

i

R

s

R

f

· R
2
i

R

2
f

, (0.21)

the second term R

2
i

/R

2
f

is due to the expansion of shell
itself, which lowers the surface density. Now replace R

i

with r, we get:

⇢(r, T ) ' ⇢

i

R

s

r + 3r0 ln[1 +
C0T

r0
e

�r/r0 ]
, (0.22)

with higher order terms ignored. We set r0 = 0.1 kpc,
�⇤ = 1026 m2, n = 105/pc3, V

DM

= 105 ms�1, and
V⇤ = 105 ms�1. by adopting the NFW parameter from
[F Nesti, P Salucci], with ⇢

i

= 1.4⇥ 107 M�/kpc3, Rs

=
16.1 kpc. We plot the density as a function of radius at
di↵erent time scale.
New calculation when consider the remnants of Pop-

ulation III star shows better result. Since they will not
vanished until merged into a supermassive black hole.
The time for them to have slingshot will be longer, say
up to 108 years or 109 years. As we can see the result in
Fig (2), the main change is the core-radius.

For this case, the corresponding parameters set are:
We set r0 = 0.5 kpc, �⇤ = 1026 m2, n = 103/pc3, V

DM

=
105 ms�1, and V⇤ = 105 ms�1. by adopting the NFW
parameter from [F Nesti, P Salucci], with ⇢

i

= 1.4 ⇥
107 M�/kpc3, Rs

= 16.1 kpc. We plot the density as a
function of radius at di↵erent time scale.
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FIG. 2. DM density profile in the inner part of the galaxy.
Red line represents the original NFW profile (T = 0 yrs).
Other curves correspond 108 years, 2.5 ⇤ 108 years, 5 ⇤ 108

years, 109 years, as shown.

I. DISCUSSION

Here we discuss the e↵ect of slingshot on stars. By con-
servation of energy and momentum, moving dark mat-
ter out of center of potential must result in decrease in
angular momentum of stars; however, baryons interac-
tions (e.g supernova explosion) other than gravity also
impact their final distribution. These mechanism make
it hard to describe the actual behavior of the stars’ mo-
tion change due to gravitational slingshot. For example,
it is proposed that supernova-driven outflow can remove
the baryons in the galaxy center and even serve as a so-
lution to cusp-core problem [9-11]. Whether these mech-

3

Such a choosing of b
max

is because: The influence of
the test star’s gravity decrease as a function of r�2 to
infinity, so presumably we should consider their influence
to infinity as well. However, at larger distance the star’s
gravity will become small compare to (1) the influence
of other stars or massive objects, (2) the influence of
background gravity (DM and baryons in the galaxy). So
we choose a b

max

wisely under these two considerations.
With this b

max

, we can define the cross-section for the
successive slingshot:

�⇤ ' ⇡b

2
max

(0.9)

We will put in some physical number in the next sec-
tion to determine the cross-section.

With numerical calculation of integrating equation
(0.7), the expected value of energy gain will be:

h�Ei ' F (u
�

, V⇤)mV

2
⇤ . (0.10)

This is the expectation value of energy gain per one
slingshot. F (u

�

, V⇤) is a function of DM velocity u

�

and
star velocity V⇤.

Mean Free Time- In this subsection we determine how
long it takes between two slingshot event for one test
particle. Therefore, mean free path, which is the aver-
age distance travelled for a moving particle between two
successive impacts, can be utilized in slingshot system.
In our case, the moving particles is the dark matter par-
ticle, and the successive impact is slingshot caused by
stars. The corresponding time it takes particle to travel
distance equals to mean free path is the mean free time.

The mean free time is:

�t =
`

V̄

DM

, ` =
1

�⇤n⇤(r)
, (0.11)

where ` is the mean free path, n⇤(r) is the star number
density (number of stars per unit volume as a function of
radius toward the galaxy center), and �⇤ is the e↵ective
cross sectional area for slingshot. The V̄

DM

is the average
of relative velocity between star and dark matter V̄

DM

=q
u

2
�

+ V

2
⇤ .

For the case of dark matter dominated dwarf galaxy
and our MilkyWay Galaxy in the current epoch, we argue
that slingshot has negligible e↵ect since the mean free
time is too long compare to the age of our universe.

However, in the early universe the situation is very
di↵erent. Firstly, the e↵ective cross sectional area for
early stars are di↵erent from present stars. In many
star formation theory [18-21], the first generation stars,
which are composed of mainly helium and hydrogen,
would be around a hundred solar mass (100M�). Since
the cross-section is proportional to the star mass, the
cross-section will increase 104 times compare with
equation (2.13). Secondly, the star number density at
the center region of galaxy might be extremely high in
the early universe when the super massive black hole
(SMBH) has not formed. Therefore, we analyze the

time evolution of DM distribution in early stage of the
universe.

Time evolution of DM distribution- To study the time
evolution of dark matter density distribution, we need
to determine the energy gain over time �E/�t caused
by slingshot mechanism. To determined the �E/�t of
slingshot, we combine the result with equations (2.11)
and (2.12):

�E

�t

=
FmV

2
⇤

`/V̄

DM

= FmV

2
⇤ V̄DM

n⇤(r)�⇤. (0.12)

Since the dark matter particle undergoes multiple
slingshots, the internal-sum of the energy change over
time can be treated approximately as di↵erential equa-
tion. Therefore we set:

dE

dt

=
�E

�t

, (0.13)

and we can solve the di↵erential equation to describe the
evolution of dark matter distribution.
Here we assume the dark matter particles are modeled

by circular orbiting shells around the dynamical center
of the halo. This picture is similar to classical version
of hydrogen orbit, in which each orbit represents an en-
ergy level. Under this picture, if without perturbation
or energy gain, the dark matter particle will always stay
on the same orbit. However if there exist energy gain
mechanism, such as slingshot mechanism, the dark mat-
ter particle will gain energy and move to higher orbit
(larger radii), which lowers the dark matter density at
center of the galaxy.
Without considering slingshot e↵ect, the N-body sim-

ulation predicts a cusp at the center of galaxy. This im-
plies that if there were no stars (or other heavy objects)
then the dark matter should grow into a cusp at the cen-
ter halo. Therefore we assume the dark matter density
is NFW profile before the formation of first stars. In
other word, we set NFW profile as initial condition for
dynamical evolution of dark matter distribution.
For simplicity, for the inner part of the halo the density

can be approximated by:

⇢(r)
NFW,inner

' ⇢

i

R

s

r

, (0.14)

In our model, the totally energy (kinetic and potential
energy) of one dark matter particle at radius r is:

E = �GM(r)m

2r
, (0.15)

where M(r) is the mass inside the sphere of radius r. For
NFW profile at the inner part of galaxy, M(r) is:

M(r) =

Z
⇢

i

R

s

r

r

2
drd⌦ = 2⇡R

s

⇢

i

r

2
, (0.16)

Now consider we “turn on” slingshot mechanism at an
instance. After a short period of time dt, the dark matter
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particle shall gain energy due to the slingshot e↵ect and
move to higher orbit with radius r0. Thus, we see:

�GM(r)m

2r0
= �GM(r)m

2r
+

dE

dt

dt, (0.17)

which r

0 = r + dr.
Now we assume the number density of stars follows the

surface-brightness profile described by Sersic law. Here
we choose the exponential distribution as a demonstra-
tion profile, which is:

n⇤(r) = n0e
�r/r0

, (0.18)

where n0 is the stellar number density at the center of
galaxy.
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FIG. 1. DM density profile in the inner part of the galaxy.
Red line represents the original NFW profile (T = 0 yrs).
Other curves correspond to other values of T , as shown.

Now we obtain the stellar number density profile from
equation (3.7) and combine with equation (3.1) and (3.6),
we have:
Z

R

f

R

i

e

r/r0
dr =

Z
T

0
C0dt, C0 =

FV

2
⇤ V̄DM

n0�⇤
2⇡GR

s

⇢

i

, (0.19)

in which R

f

and R

i

are the final radius and initial radius
of the dark matter orbit, respectively. After the integra-
tion we will see the relationship between radius (R

f

, R
i

)
and time (T ):

R

f

r0
=

R

i

r0
+ ln

⇥
1 +

C0T

r0
e

�R

i

/r0
⇤
, (0.20)

and the density distribution after time T becomes:

⇢(r, T ) =
⇢

i

R

s

R

f

· R
2
i

R

2
f

, (0.21)

the second term R

2
i

/R

2
f

is due to the expansion of shell
itself, which lowers the surface density. Now replace R

i

with r, we get:

⇢(r, T ) ' ⇢

i

R

s

r + 3r0 ln[1 +
C0T

r0
e

�r/r0 ]
, (0.22)

with higher order terms ignored. We set r0 = 0.1 kpc,
�⇤ = 1026 m2, n = 105/pc3, V

DM

= 105 ms�1, and
V⇤ = 105 ms�1. by adopting the NFW parameter from
[F Nesti, P Salucci], with ⇢

i

= 1.4⇥ 107 M�/kpc3, Rs

=
16.1 kpc. We plot the density as a function of radius at
di↵erent time scale.
New calculation when consider the remnants of Pop-

ulation III star shows better result. Since they will not
vanished until merged into a supermassive black hole.
The time for them to have slingshot will be longer, say
up to 108 years or 109 years. As we can see the result in
Fig (2), the main change is the core-radius.

For this case, the corresponding parameters set are:
We set r0 = 0.5 kpc, �⇤ = 1026 m2, n = 103/pc3, V

DM

=
105 ms�1, and V⇤ = 105 ms�1. by adopting the NFW
parameter from [F Nesti, P Salucci], with ⇢

i

= 1.4 ⇥
107 M�/kpc3, Rs

= 16.1 kpc. We plot the density as a
function of radius at di↵erent time scale.
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FIG. 2. DM density profile in the inner part of the galaxy.
Red line represents the original NFW profile (T = 0 yrs).
Other curves correspond 108 years, 2.5 ⇤ 108 years, 5 ⇤ 108

years, 109 years, as shown.

I. DISCUSSION

Here we discuss the e↵ect of slingshot on stars. By con-
servation of energy and momentum, moving dark mat-
ter out of center of potential must result in decrease in
angular momentum of stars; however, baryons interac-
tions (e.g supernova explosion) other than gravity also
impact their final distribution. These mechanism make
it hard to describe the actual behavior of the stars’ mo-
tion change due to gravitational slingshot. For example,
it is proposed that supernova-driven outflow can remove
the baryons in the galaxy center and even serve as a so-
lution to cusp-core problem [9-11]. Whether these mech-

Time evolution of DM 
density profile
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OTHER IMPLICATION

• Missing Satellites Problem

• Too Big To Fail Problem

M Boylan-Kolchin et al. (2011)



SUMMARY

• Slingshot effect is not resolved in N-Body simulations due to: 
(1)Resolution limit (2) The absence of stars in many 
simulations.

• Slingshot naturally solve the cusp-core problem.

• Slingshot effect provides a natural mechanism to alleviate 
other CDM small scale problems.


